

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2*E*)-2-(4-Hydroxy-3-methoxybenzylidene)hydrazinecarboxamide

M. Nawaz Tahir,^a* Akbar Ali,^b M. Naveed Umar,^b Ishtiaq Hussain^c and Hazoor Ahmad Shad^d

^aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, ^bDepartment of Chemistry, University of Malakand, Pakistan, ^cDepartment of Chemistry, University of Sargodha, Pakistan, and ^dDepartment of Chemistry, Government Post Graduate College, Gojra, Punjab, Pakistan

Correspondence e-mail: dmntahir_uos@yahoo.com

Received 1 June 2012; accepted 4 June 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.009 Å; R factor = 0.056; wR factor = 0.113; data-to-parameter ratio = 7.0.

In the title compound, $C_9H_{11}N_3O_3$, two molecules are present in the asymmetric unit in which the 4-hydroxy-3-methoxybenzaldehyde and hydrazinecarboxamide units are almost planar [with r.m.s. deviations 0.0212 and 0.0066 Å, respectively, in one molecule and 0.0346 and 0.0095 Å, respectively, in the other] and are oriented at dihedral angles of 9.7 (3) and 16.6 (3)°. In both molecules, two S(5) ring motifs are present due to N-H···N and O-H···O hydrogen bonds. In the crystal, the molecules are dimerized with each other due to pairs of N-H···O hydrogen bonds, forming an $R_2^2(8)$ ring motif. O-H···O hydrogen bonds lead to the formation of a three-dimensional network.

Related literature

For a related structure, see: Tahir *et al.* (2012). For graph-set notation, see: Bernstein *et al.* (1995).

Experimental

Crystal data $C_9H_{11}N_3O_3$ $M_r = 209.21$ Orthorhombic, $Pca2_1$ a = 13.9945 (14) Å b = 5.0440 (4) Å

c = 27.280 (2) A
V = 1926.0 (3) Å ³
Z = 8

Mo $K\alpha$ radiation $\mu = 0.11 \text{ mm}^{-1}$

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{min} = 0.957, T_{max} = 0.966$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.056$ 275 parameters $wR(F^2) = 0.113$ H-atom parameters constrainedS = 0.98 $\Delta \rho_{max} = 0.22$ e Å⁻³1931 reflections $\Delta \rho_{min} = -0.25$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2A\cdots O1$	0.82	2.17	2.627 (6)	115
$O2-H2A\cdots O5^{1}$	0.82	2.34	3.108 (7)	156
$N2-H2B\cdots O6^{ii}$	0.86	2.11	2.923 (7)	158
$N3-H3A\cdots O6^{iii}$	0.86	2.16	2.987 (7)	162
$N3 - H3B \cdot \cdot \cdot N1$	0.86	2.31	2.674 (8)	106
$O5-H5A\cdots O4$	0.82	2.18	2.632 (6)	115
$N5-H5B\cdots O3^{iv}$	0.86	2.08	2.909 (7)	161
$N6-H6A\cdotsO3^{v}$	0.86	2.13	2.965 (7)	164
$N6-H6B\cdots N4$	0.86	2.32	2.677 (7)	105

Symmetry codes: (i) $-x, -y, z + \frac{1}{2}$; (ii) x, y + 1, z; (iii) $x - \frac{1}{2}, -y, z$; (iv) x, y - 1, z; (v) $x + \frac{1}{2}, -y + 1, z$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*).

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2364).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Tahir, M. N., Umar, M. N., Ali, A. & Shad, H. A. (2012). Acta Cryst. E68, 01724.

 $0.30 \times 0.16 \times 0.14 \text{ mm}$

8297 measured reflections

1931 independent reflections

1046 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.081$

supplementary materials

Acta Cryst. (2012). E68, o2071 [doi:10.1107/S1600536812025299]

(2E)-2-(4-Hydroxy-3-methoxybenzylidene)hydrazinecarboxamide

M. Nawaz Tahir, Akbar Ali, M. Naveed Umar, Ishtiaq Hussain and Hazoor Ahmad Shad

Comment

The title compound (I), (Fig. 1) has been synthesized as a derivative. Recently we have reported the crystal structure of (2E)-2-(3,4-dimethoxybenzylidene)hydrazinecarboxamide (Tahir *et al.*, 2012) which is related to the title compound. In (I), two molecules are present in the asymmetric unit, which differ slightly from each other geometrically. In one molecule, the parts of 4-hydroxy-3-methoxybenzaldehyde and hydrazinecarboxamide A (C1—C8/O1/O2) and B (N1/N2/C9/N3/O3), are almost planar with r.m.s. deviations of 0.0212 Å and 0.0066 Å, respectively. The dihedral angle between A/B is 16.57 (26)°. In the second molecule, the similar groups C (C10—C17/O4/O5) and D (N4/N5/C18/N6/O6) are also planar with r.m.s. deviations of 0.0346 Å and 0.0095 Å, respectively, and the dihedral angle between C/D is 9.74 (28)°. In both molecules two *S*(5) ring motifs (Bernstein *et al.*, 1995) are present due to H–bonding of N—H···N and O—H···O types (Table 1, Fig. 1). The molecules are dimerized with each other due to N—H···O type of H-bondings and form $R_2^2(8)$ ring motifs (Table 1, Fig. 2). The molecules are stabilized in the form of three-dimensional polymeric network.

Experimental

Equimolar quantities of 4-hydroxy-3-methoxybenzaldehyde and hydrazinecarboxamide were refluxed in methanol along with few drops of acetic acid as catalyst for 45 min resulting in light orange solution. The solution was kept at room temperature which afforded light orange needles after few days.

Refinement

In the absence of anomalous scattering all Friedel pairs were merged. The H-atoms were positioned geometrically (C–H = 0.93—0.96 Å, N—H = 0.86 Å, O—H = 0.82 Å) and refined as riding with $U_{iso}(H) = xU_{eq}(C, N, O)$, where x = 1.5 for hydroxy and methyl and x = 1.2 for other H-atoms.

Computing details

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON* (Spek, 2009).

Figure 1

View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level.

Figure 2

The partial packing (*PLATON*; Spek, 2009) which shows that molecules form ring motifs in three-dimensional polymeric network.

(2E)-2-(4-Hydroxy-3-methoxybenzylidene)hydrazinecarboxamide

Crystal data

C₉H₁₁N₃O₃ $M_r = 209.21$ Orthorhombic, $Pca2_1$ Hall symbol: P 2c -2ac a = 13.9945 (14) Å b = 5.0440 (4) Å c = 27.286 (2) Å V = 1926.0 (3) Å³ Z = 8

Data collection

Bruker Kappa APEXII CCD	8297 measured reflections
diffractometer	1931 independent reflections
Radiation source: fine-focus sealed tube	1046 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.081$
Detector resolution: 8.00 pixels mm ⁻¹	$\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 2.9^\circ$
ω scans	$h = -17 \rightarrow 17$
Absorption correction: multi-scan	$k = -3 \rightarrow 6$
(SADABS; Bruker, 2005)	$l = -33 \rightarrow 33$
$T_{\min} = 0.957, \ T_{\max} = 0.966$	
Refinement	

F(000) = 880

 $\theta = 1.8 - 26.0^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$

Needle, colorless

 $0.30 \times 0.16 \times 0.14 \text{ mm}$

T = 296 K

 $D_{\rm x} = 1.443 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2704 reflections

Definement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.039P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.22 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.1256 (3)	-0.4282 (10)	0.51673 (17)	0.051 (2)	
O2	0.3120 (3)	-0.4570 (10)	0.52664 (17)	0.0437 (19)	
03	-0.0668 (3)	0.7125 (10)	0.3095 (2)	0.0423 (16)	
N1	0.0730 (4)	0.3033 (11)	0.38554 (19)	0.035 (2)	
N2	0.0463 (3)	0.5085 (12)	0.3552 (2)	0.041 (2)	

N3 -0.1032 (4) 0.3268 (12) 0.3479 (2) 0.0481 (2)C1 0.1988 (4) 0.0965 (14) 0.4299 (2) 0.031 (3)C2 0.1392 (5) -0.0745 (13) 0.4553 (3) 0.035 (3)C3 0.1755 (4) -0.2580 (13) 0.4879 (2) 0.031 (2)C5 0.3343 (4) -0.1063 (13) 0.4703 (2) 0.039 (3)C6 0.2995 (4) 0.0792 (13) 0.4384 (2) 0.037 (3)C7 0.0252 (4) -0.4398 (15) 0.5100 (3) 0.049 (3)C8 0.1602 (5) 0.2916 (13) 0.3966 (2) 0.032 (2)C9 -0.0445 (4) 0.5255 (14) 0.3362 (2) 0.031 (2)C4 -0.199 (3) 0.9504 (9) 0.1503 (17) 0.0413 (16)C5 -0.2032 (3) 0.8811 (10) 0.08760 (18) 0.049 (2)C6 0.2021 (3) -0.1888 (9) 0.31097 (17) 0.0433 (17)N4 0.0595 (3) 0.2198 (10) 0.2364 (2) 0.040 (2)N5 0.0884 (4) 0.1926 (10) 0.2705 (2) 0.044 (2)C10 -0.0733 (4) 0.4191 (13) 0.1670 (2) 0.029 (2)C11 -0.0188 (4) 0.5961 (13) 0.1670 (2) 0.032 (3)C14 -0.2137 (5) 0.5398 (14) 0.1471 (3) 0.038 (3)C15 -0.1697 (4) 0.3796 (13) 0.1226 (2) 0.033 (2)C14 -0.2137 (5) 0.5398 (14) 0.1471 (3) 0.038 (2)C15 -0.0697 (4) </th <th></th> <th></th> <th></th> <th></th> <th></th>					
C1 0.1988 (4) 0.0965 (14) 0.4299 (2) 0.031 (3) C2 0.1392 (5) -0.0745 (13) 0.4553 (3) 0.035 (3) C3 0.1765 (4) -0.2735 (12) 0.4950 (2) 0.031 (2) C5 0.3343 (4) -0.1063 (13) 0.4703 (2) 0.039 (3) C6 0.2965 (4) 0.0792 (13) 0.4384 (2) 0.037 (3) C7 0.0252 (4) -0.4398 (15) 0.5100 (3) 0.049 (3) C8 0.1602 (5) 0.2916 (13) 0.3366 (2) 0.032 (2) C9 -0.0445 (4) 0.5255 (14) 0.3362 (2) 0.031 (2) C4 -0.0199 (3) 0.9504 (9) 0.10503 (17) 0.0443 (16) C5 -0.2032 (3) 0.811 (10) 0.0870 (18) 0.037 (17) N4 0.0595 (3) 0.2198 (10) 0.23612 (18) 0.037 (17) N4 0.0595 (13) 0.1670 (2) 0.029 (2) 0.1613 C10 -0.0733 (4) 0.4199 (13) 0.1617 (2) 0.0235 (2) C11 -0.0636	N3	-0.1032 (4)	0.3268 (12)	0.3479 (2)	0.048 (2)
C20.1392 (5)-0.0745 (13)0.4553 (3)0.033 (3)C30.1765 (4)-0.2580 (13)0.4879 (2)0.031 (3)C40.2739 (5)-0.2735 (12)0.4870 (2)0.033 (3)C50.3343 (4)-0.1063 (13)0.4703 (2)0.033 (3)C60.2965 (4)0.0792 (13)0.4384 (2)0.037 (3)C70.0252 (4)-0.4398 (15)0.5100 (3)0.049 (3)C80.1062 (5)0.2916 (13)0.3666 (2)0.031 (2)C9-0.0445 (4)0.5255 (14)0.3362 (2)0.031 (2)C4-0.0199 (3)0.9504 (9)0.10503 (17)0.0401 (7)C5-0.2032 (3)0.8811 (10)0.08760 (18)0.049 (2)C60.2021 (3)-0.1888 (9)0.31097 (17)0.0403 (17)N40.0595 (3)0.1298 (10)0.23612 (18)0.0307 (17)N50.0884 (4)0.189 (10)0.23612 (18)0.0307 (17)N50.0884 (4)0.1896 (10)0.2705 (2)0.044 (2)C10-0.0733 (4)0.4109 (13)0.1914 (2)0.031 (2)C11-0.0188 (4)0.5961 (13)0.1670 (2)0.029 (2)C12-0.0626 (5)0.7582 (13)0.1226 (2)0.032 (3)C14-0.2137 (5)0.5398 (14)0.1471 (3)0.038 (3)C15-0.1697 (4)0.3796 (13)0.1809 (2)0.035 (2)C160.0808 (4)0.9841 (14)0.1099 (3)0.045 (3)C17-0.0297 (4)0.2151 (12)0.2845 (2)0.03	C1	0.1988 (4)	0.0965 (14)	0.4299 (2)	0.031 (3)
C30.1755 (4) $-0.2580 (13)$ 0.4879 (2)0.031 (3)C40.2739 (5) $-0.2735 (12)$ 0.4950 (2)0.031 (2)C50.3343 (4) $-0.1063 (13)$ 0.4703 (2)0.039 (3)C60.2965 (4)0.0792 (13)0.4384 (2)0.037 (3)C70.0252 (4) $-0.4398 (15)$ 0.5100 (3)0.049 (3)C80.1602 (5)0.2916 (13)0.3366 (2)0.032 (2)C9 $-0.0445 (4)$ 0.5255 (14)0.3362 (2)0.031 (2)O4 $-0.0199 (3)$ 0.9504 (9)0.10503 (17)0.0413 (16)O5 $-0.203 (2)$ 0.8811 (10)0.8760 (18)0.049 (2)O60.2021 (3) $-0.188 (9)$ 0.31097 (17)0.0430 (17)N40.0595 (3)0.2198 (10)0.23612 (18)0.0371 (7)N50.0884 (4)0.1926 (10)0.2705 (2)0.044 (2)C10 $-0.0733 (4)$ 0.4019 (13)0.1914 (2)0.031 (2)C11 $-0.6163 (4)$ 0.7257 (13)0.1226 (2)0.032 (3)C14 $-0.2137 (5)$ 0.5398 (14)0.1471 (3)0.383 (3)C15 $-0.1697 (4)$ 0.3796 (13)0.1809 (2)0.035 (2)C160.888 (4)0.9841 (14)0.1099 (3)0.045 (3)C17 $-0.0297 (4)$ 0.2151 (12)0.2254 (2)0.033 (2)C160.888 (4)0.95910.386660.0569*H3A -0.16059 0.324390.365660.059*H3A -0.16059 0.324390.365660.059* </td <td>C2</td> <td>0.1392 (5)</td> <td>-0.0745 (13)</td> <td>0.4553 (3)</td> <td>0.035 (3)</td>	C2	0.1392 (5)	-0.0745 (13)	0.4553 (3)	0.035 (3)
C4 0.2739 (5) -0.2735 (12) 0.4950 (2) 0.031 (2)C5 0.3343 (4) -0.1063 (13) 0.4703 (2) 0.039 (3)C6 0.2955 (4) -0.792 (13) 0.4384 (2) 0.037 (3)C7 0.0252 (4) -0.4398 (15) 0.5100 (3) 0.049 (3)C8 0.1602 (5) 0.2916 (13) 0.3966 (2) 0.031 (2)C9 -0.0445 (4) 0.5255 (14) 0.3562 (2) 0.031 (2)C4 -0.0199 (3) 0.9504 (9) 0.10503 (17) 0.0413 (16)O5 -0.2032 (3) 0.8811 (10) 0.8760 (18) 0.049 (2)O6 0.2021 (3) -0.1888 (9) 0.31097 (17) 0.0430 (17)N4 0.0595 (3) 0.2198 (10) 0.27612 (18) 0.0307 (17)N5 0.0884 (4) 0.1926 (10) 0.705 (2) 0.044 (2)C10 -0.0733 (4) 0.419 (13) 0.1914 (2) 0.031 (2)C11 -0.0188 (4) 0.5961 (13) 0.1570 (2) 0.032 (3)C12 -0.0626 (5) 0.7582 (13) 0.1226 (2) 0.033 (2)C13 -0.1603 (4) 0.7257 (13) 0.1226 (2) 0.033 (2)C14 -0.2137 (5) 0.5398 (14) 0.1471 (13) 0.388 (3)C15 -0.1697 (4) 0.3764 (13) 0.1890 (2) 0.035 (2)C16 0.0808 (4) 0.9841 (14) 0.1099 (3) 0.045 (3)C17 -0.0297 (4) 0.2151 (12) 0.2254 (2) 0.033 (2)H2 0.0752 </td <td>C3</td> <td>0.1765 (4)</td> <td>-0.2580 (13)</td> <td>0.4879 (2)</td> <td>0.031 (3)</td>	C3	0.1765 (4)	-0.2580 (13)	0.4879 (2)	0.031 (3)
C5 0.3343 (4) -0.1063 (13) 0.4703 (2) 0.039 (3)C6 0.2965 (4) 0.0792 (13) 0.4384 (2) 0.037 (3)C7 0.0252 (4) -0.4398 (15) 0.5100 (3) 0.0449 (3)C8 0.1602 (5) 0.2916 (13) 0.3966 (2) 0.032 (2)C9 -0.0445 (4) 0.5255 (14) 0.3362 (2) 0.031 (2)O4 -0.0199 (3) 0.9504 (9) 0.10503 (17) 0.0443 (16)O5 -0.2032 (3) 0.8811 (10) 0.88760 (18) 0.049 (2)O6 0.2021 (3) -0.1888 (9) 0.31097 (17) 0.0430 (17)N4 0.0595 (3) 0.2198 (10) 0.2268 (2) 0.044 (2)C10 -0.0733 (4) 0.189 (11) 0.2668 (2) 0.040 (2)N5 0.0884 (4) 0.1189 (11) 0.2668 (2) 0.044 (2)C11 -0.0188 (4) 0.1926 (10) 0.2705 (2) 0.031 (2)C12 -0.0626 (5) 0.7582 (13) 0.1326 (2) 0.033 (2)C13 -0.1603 (4) 0.7257 (13) 0.1226 (2) 0.033 (2)C14 -0.2137 (5) 0.5398 (14) 0.1471 (3) 0.038 (3)C15 -0.1697 (4) 0.3796 (13) 0.1809 (2) 0.035 (2)C16 0.0808 (4) 0.9841 (14) 0.1099 (3) 0.0444 (3)C15 -0.1697 (4) 0.2757 (1) 0.2544 (2) 0.033 (2)C16 0.0808 (4) 0.9841 (14) 0.1099 (3) 0.0424^* L2 0.07552 <td>C4</td> <td>0.2739 (5)</td> <td>-0.2735 (12)</td> <td>0.4950 (2)</td> <td>0.031 (2)</td>	C4	0.2739 (5)	-0.2735 (12)	0.4950 (2)	0.031 (2)
C6 0.2965 (4) 0.0792 (13) 0.4384 (2) 0.037 (3)C7 0.0252 (4) -0.4398 (15) 0.5100 (3) 0.049 (3)C8 0.1602 (5) 0.2916 (13) 0.3966 (2) 0.031 (2)C9 -0.0445 (4) 0.5255 (14) 0.3362 (2) 0.031 (2)O4 -0.0199 (3) 0.9504 (9) 0.10503 (17) 0.0413 (16)O5 -0.2032 (3) 0.8811 (10) 0.2057 (18) 0.0490 (17)N4 0.0595 (3) 0.2198 (10) 0.23612 (18) 0.0307 (17)N5 0.0884 (4) 0.11926 (10) 0.705 (2) 0.0444 (2)C10 -0.0733 (4) 0.4019 (13) 0.1914 (2) 0.031 (2)C11 -0.0188 (4) 0.5961 (13) 0.1570 (2) 0.029 (2)C12 -0.0626 (5) 0.7582 (13) 0.1226 (2) 0.032 (3)C14 -0.2137 (5) 0.5398 (14) 0.1471 (3) 0.038 (3)C15 -0.1697 (4) 0.3796 (13) 0.1226 (2) 0.033 (2)C16 0.0808 (4) 0.9841 (14) 0.1099 (3) 0.0445 (3)C17 -0.0297 (4) 0.2151 (12) 0.2254 (2) 0.033 (2)C18 0.1785 (5) 0.0009 (15) 0.24545 (2) 0.033 (2)C19 0.03772 0.2684 0.47685 0.0490^* H20 0.03772 0.22442 0.34765 0.490^* H31 -0.06371 0.254591 0.36668 0.0569^* H33 -0.06372 0.34795 $0.$	C5	0.3343 (4)	-0.1063 (13)	0.4703 (2)	0.039 (3)
C7 $0.0252 (4)$ $-0.4398 (15)$ $0.5100 (3)$ $0.049 (3)$ C8 $0.1602 (5)$ $0.2916 (13)$ $0.3966 (2)$ $0.032 (2)$ C9 $-0.0445 (4)$ $0.5255 (14)$ $0.3562 (2)$ $0.031 (2)$ O4 $-0.0199 (3)$ $0.9504 (9)$ $0.10503 (17)$ $0.0413 (16)$ O5 $-0.2032 (3)$ $0.8811 (10)$ $0.08760 (18)$ $0.049 (2)$ O6 $0.2021 (3)$ $-0.1888 (9)$ $0.31097 (17)$ $0.0430 (17)$ N4 $0.0595 (3)$ $0.2198 (10)$ $0.23612 (18)$ $0.0307 (17)$ N5 $0.0884 (4)$ $0.0192 (10)$ $0.2705 (2)$ $0.044 (2)$ C10 $-0.0733 (4)$ $0.4019 (13)$ $0.1914 (2)$ $0.031 (2)$ C11 $-0.082 (5)$ $0.7582 (13)$ $0.1226 (2)$ $0.030 (2)$ C12 $-0.0626 (5)$ $0.7582 (13)$ $0.1226 (2)$ $0.030 (2)$ C13 $-0.1603 (4)$ $0.7257 (13)$ $0.1226 (2)$ $0.033 (2)$ C14 $-0.2137 (5)$ $0.5398 (14)$ $0.1471 (3)$ $0.388 (3)$ C15 $-0.1697 (4)$ $0.3796 (13)$ $0.1809 (2)$ $0.035 (2)$ C16 $0.0808 (4)$ $0.9841 (14)$ $0.1991 (3)$ $0.045 (3)$ C17 $-0.0297 (4)$ $0.2151 (12)$ $0.2254 (2)$ $0.033 (2)$ L12 $0.0755 (5)$ 0.32439 0.33656 0.0569^* H3A -0.16059 0.32439 0.33656 0.0569^* H3B -0.0872 $0.2151 (12)$ 0.2244 0.0444^* H2A $0.2264 (2)$ 0.33740 <td>C6</td> <td>0.2965 (4)</td> <td>0.0792 (13)</td> <td>0.4384 (2)</td> <td>0.037 (3)</td>	C6	0.2965 (4)	0.0792 (13)	0.4384 (2)	0.037 (3)
C8 0.1602 (5) 0.2916 (13) 0.3966 (2) 0.032 (2)C9 -0.0445 (4) 0.5255 (14) 0.3362 (2) 0.031 (2)O4 -0.0199 (3) 0.9504 (9) 0.10503 (17) 0.0413 (16)O5 -0.2022 (3) 0.8811 (10) 0.08760 (18) 0.0499 (2)O6 0.2021 (3) -0.1888 (9) 0.31097 (17) 0.0430 (17)N4 0.0595 (3) 0.2198 (10) 0.23612 (18) 0.0307 (17)N5 0.0884 (4) 0.11926 (10) 0.2705 (2) 0.044 (2)C10 -0.0733 (4) 0.4019 (13) 0.1914 (2) 0.031 (2)C11 -0.0188 (4) 0.5961 (13) 0.1670 (2) 0.032 (3)C12 -0.6626 (5) 0.7582 (13) 0.1226 (2) 0.030 (2)C13 -0.1603 (4) 0.7257 (13) 0.1226 (2) 0.033 (3)C14 -0.2137 (5) 0.5398 (14) 0.1471 (3) 0.038 (3)C15 -0.1697 (4) 0.2151 (12) 0.2254 (2) 0.030 (2)C16 0.808 (4) 0.9841 (14) 0.1099 (3) 0.045 (3)C17 -0.0297 (4) 0.2151 (12) 0.2254 (2) 0.030 (2)C18 0.1785 (5) 0.0009 (15) 0.2845 (2) 0.033 (2)H2 0.0757 0.26892 0.34795 0.0490^* H3B -0.06370 0.2174 0.36668 0.569^* H3B -0.0877 0.25066 0.53213 0.0593^* H7B -0.00207 -0.26864 $0.$	C7	0.0252 (4)	-0.4398 (15)	0.5100 (3)	0.049 (3)
C9 -0.0445 (4) 0.5255 (14) 0.3362 (2) 0.031 (2)O4 -0.0199 (3) 0.9504 (9) 0.10503 (17) 0.0413 (16)O5 -0.2032 (3) 0.8811 (10) 0.08760 (18) 0.049 (2)O6 0.2021 (3) -0.1888 (9) 0.31097 (17) 0.0430 (17)N4 0.0595 (3) 0.2198 (10) 0.23612 (18) 0.0307 (17)N5 0.0884 (4) 0.11926 (10) 0.2705 (2) 0.044 (2)C10 -0.0733 (4) 0.4019 (13) 0.1914 (2) 0.031 (2)C11 -0.0188 (4) 0.5961 (13) 0.1670 (2) 0.022 (3)C12 -0.0626 (5) 0.7252 (13) 0.1226 (2) 0.032 (3)C13 -0.1603 (4) 0.7257 (13) 0.1226 (2) 0.033 (2)C14 -0.2137 (5) 0.5398 (14) 0.1471 (3) 0.038 (3)C15 -0.1697 (4) 0.3766 (13) 0.1809 (2) 0.035 (2)C16 0.0080 (4) 0.9841 (14) 0.1099 (3) 0.045 (3)C17 -0.0297 (4) 0.2151 (12) 0.2254 (2) 0.030 (2)C18 0.1785 (5) 0.0009 (15) 0.2845 (2) 0.033 (2)C18 0.1785 (5) 0.0009 (15) 0.2845 (2) 0.033 (2)H2A 0.26884 -0.54591 0.35666 $0.0569*$ H3B -0.08372 0.2124 0.34458 $0.4424*$ H2A 0.26884 -0.54591 0.35666 $0.0569*$ H3B -0.00207 -0.26864	C8	0.1602 (5)	0.2916 (13)	0.3966 (2)	0.032 (2)
04 -0.0199 (3) 0.9504 (9) 0.10503 (17) 0.0413 (16) 05 -0.2032 (3) 0.8811 (10) 0.08760 (18) 0.049 (2) 06 0.2021 (3) -0.1888 (9) 0.31097 (17) 0.0430 (17) $N4$ 0.0585 (3) 0.2198 (10) 0.23612 (18) 0.0307 (17) $N5$ 0.0884 (4) 0.0189 (11) 0.2668 (2) 0.040 (2) $N6$ 0.2384 (4) 0.0189 (11) 0.2668 (2) 0.044 (2) $C10$ -0.0733 (4) 0.4019 (13) 0.1914 (2) 0.031 (2) $C11$ -0.0188 (4) 0.5961 (13) 0.1670 (2) 0.030 (2) $C13$ -0.1603 (4) 0.7257 (13) 0.1226 (2) 0.033 (3) $C14$ -0.2137 (5) 0.5398 (14) 0.1471 (3) 0.038 (3) $C15$ -0.1697 (4) 0.3796 (13) 0.1809 (2) 0.035 (2) $C16$ 0.0808 (4) 0.9841 (14) 0.1099 (3) 0.045 (3) $C17$ -0.0297 (4) 0.2151 (12) 0.2254 (2) 0.033 (2) $C18$ 0.1785 (5) 0.0009 (15) 0.2845 (2) 0.033 (2) $H2A$ 0.26884 -0.54591 0.53860 0.0649^* $H2B$ 0.08747 0.62892 0.34795 0.0490^* $H3B$ -0.08372 0.20124 0.36668 0.0569^* $H3B$ -0.08372 0.2124 0.36668 0.0593^* $H7B$ -0.0207 -0.26864 0.51642 0.0593^* $H7B$ -0.0027	C9	-0.0445 (4)	0.5255 (14)	0.3362 (2)	0.031 (2)
O5 -0.2032 (3) 0.8811 (10) 0.08760 (18) 0.049 (2)O6 0.2021 (3) -0.1888 (9) 0.31097 (17) 0.0430 (17)N4 0.0595 (3) 0.2198 (10) 0.23612 (18) 0.0307 (17)N5 0.0884 (4) 0.0189 (11) 0.2668 (2) 0.040 (2)N6 0.2384 (4) 0.1926 (10) 0.2705 (2) 0.044 (2)C10 -0.0733 (4) 0.4019 (13) 0.1914 (2) 0.031 (2)C11 -0.0188 (4) 0.5961 (13) 0.1670 (2) 0.032 (3)C12 -0.0626 (5) 0.7582 (13) 0.1326 (2) 0.033 (2)C13 -0.1603 (4) 0.7257 (13) 0.1226 (2) 0.033 (3)C14 -0.2137 (5) 0.5398 (14) 0.1471 (3) 0.038 (3)C15 -0.1697 (4) 0.3796 (13) 0.1899 (2) 0.035 (2)C16 0.0808 (4) 0.99841 (14) 0.1999 (3) 0.045 (3)C17 -0.0297 (4) 0.2151 (12) 0.2254 (2) 0.033 (2)C18 0.1785 (5) 0.0009 (15) 0.2845 (2) 0.033 (2)C18 0.7825 -0.66591 0.45048 $0.0424*$ H2A 0.26884 -0.54591 0.53860 $0.6649*$ H2B 0.08747 0.62892 0.34795 $0.0490*$ H3A -0.1695 0.32439 0.33656 $0.0569*$ H3B -0.08372 0.20124 0.36668 $0.0593*$ H7B -0.00207 -0.26864 0.51642 $0.0593*$ <	O4	-0.0199(3)	0.9504 (9)	0.10503 (17)	0.0413 (16)
O6 0.2021 (3) -0.1888 (9) 0.31097 (17) 0.0430 (17)N4 0.0595 (3) 0.2198 (10) 0.23612 (18) 0.0307 (17)N5 0.0884 (4) 0.189 (11) 0.2668 (2) 0.044 (2)C10 -0.0733 (4) 0.1926 (10) 0.2705 (2) 0.044 (2)C11 -0.0188 (4) 0.5961 (13) 0.1914 (2) 0.030 (2)C12 -0.0626 (5) 0.7582 (13) 0.1226 (2) 0.032 (3)C13 -0.1603 (4) 0.7257 (13) 0.1226 (2) 0.032 (3)C14 -0.2137 (5) 0.5398 (14) 0.1471 (3) 0.038 (3)C15 -0.1697 (4) 0.3796 (13) 0.1809 (2) 0.035 (2)C16 0.0808 (4) 0.9841 (14) 0.1999 (3) 0.045 (3)C17 -0.0297 (4) 0.2151 (12) 0.2254 (2) 0.033 (2)C18 0.1785 (5) 0.0009 (15) 0.2845 (2) 0.033 (2)H2 0.07352 -0.06591 0.45048 $0.0424*$ H2A 0.26884 -0.54591 0.53860 $0.669*$ H3B -0.08372 0.20124 0.36668 $0.0569*$ H3B -0.08372 0.20124 0.36668 $0.0593*$ H7M 0.01136 -0.49086 0.47685 $0.0593*$ H7B -0.00207 -0.26844 0.51642 $0.0593*$ H7B -0.00207 -0.26864 0.51642 $0.0593*$ H7B -0.00207 -0.26864 0.17385 $0.0593*$ H7B	05	-0.2032 (3)	0.8811 (10)	0.08760 (18)	0.049 (2)
N4 0.0595 (3) 0.2198 (10) 0.23612 (18) 0.0307 (17)N5 0.0884 (4) 0.0189 (11) 0.2668 (2) 0.040 (2)N6 0.2384 (4) 0.1926 (10) 0.2705 (2) 0.044 (2)C10 -0.0733 (4) 0.4019 (13) 0.1914 (2) 0.031 (2)C11 -0.0188 (4) 0.5961 (13) 0.1670 (2) 0.029 (2)C12 -0.0626 (5) 0.7582 (13) 0.1226 (2) 0.030 (2)C13 -0.1603 (4) 0.7257 (13) 0.1226 (2) 0.033 (3)C14 -0.2137 (5) 0.5398 (14) 0.1471 (3) 0.038 (3)C15 -0.1697 (4) 0.3796 (13) 0.1809 (2) 0.035 (2)C16 0.0808 (4) 0.9841 (14) 0.1099 (3) 0.045 (3)C17 -0.0297 (4) 0.2151 (12) 0.2245 (2) 0.033 (2)C18 0.1785 (5) 0.0009 (15) 0.2845 (2) 0.033 (2)C18 0.1785 (5) 0.0009 (15) 0.2845 (2) 0.033 (2)L2 0.07352 -0.6591 0.45048 $0.0424*$ H2A 0.26884 -0.54591 0.53860 $0.0669*$ H3B -0.08372 0.20124 0.36668 $0.0559*$ H3B -0.0207 -0.26864 0.51642 $0.0593*$ H7A 0.01136 -0.49086 0.47685 $0.0393*$ H7B -0.00207 -0.26864 0.51642 $0.0593*$ H7A 0.0207 -0.26864 0.51642 $0.0593*$	O6	0.2021 (3)	-0.1888 (9)	0.31097 (17)	0.0430 (17)
N5 0.0884 (4) 0.0189 (11) 0.2668 (2) 0.040 (2) N6 0.2384 (4) 0.1926 (10) 0.2705 (2) 0.044 (2) C10 -0.0733 (4) 0.4019 (13) 0.1914 (2) 0.031 (2) C11 -0.0188 (4) 0.5961 (13) 0.1670 (2) 0.029 (2) C12 -0.0626 (5) 0.7582 (13) 0.1226 (2) 0.033 (2) C14 -0.2137 (5) 0.5398 (14) 0.1471 (3) 0.038 (3) C15 -0.1697 (4) 0.3796 (13) 0.1809 (2) 0.035 (2) C16 0.0808 (4) 0.9841 (14) 0.1471 (3) 0.038 (3) C17 -0.0297 (4) 0.2151 (12) 0.2254 (2) 0.033 (2) C18 0.1785 (5) 0.0009 (15) 0.2845 (2) 0.033 (2) H2 0.07352 -0.06591 0.45048 0.0424* H2A 0.26884 -0.54591 0.35860 0.0649* H2B 0.08747 0.62892 0.34795 0.0440* H3A -0.16059 0.32439 0.3365	N4	0.0595 (3)	0.2198 (10)	0.23612 (18)	0.0307 (17)
N6 0.2384 (4) 0.1926 (10) 0.2705 (2) 0.044 (2)C10 -0.0733 (4) 0.4019 (13) 0.1914 (2) 0.031 (2)C11 -0.0188 (4) 0.5961 (13) 0.1670 (2) 0.029 (2)C12 -0.0626 (5) 0.7582 (13) 0.1326 (2) 0.030 (2)C13 -0.1603 (4) 0.7257 (13) 0.1226 (2) 0.032 (3)C14 -0.2137 (5) 0.5398 (14) 0.1471 (3) 0.038 (3)C15 -0.1697 (4) 0.3796 (13) 0.1809 (2) 0.035 (2)C16 0.0808 (4) 0.9841 (14) 0.1099 (3) 0.045 (3)C17 -0.0297 (4) 0.2151 (12) 0.2254 (2) 0.030 (2)C18 0.1785 (5) 0.0009 (15) 0.2845 (2) 0.033 (2)H2 0.07352 -0.06591 0.45048 $0.0424*$ H2A 0.26884 -0.54591 0.53860 $0.669*$ H3B -0.08372 0.20124 0.36668 $0.0569*$ H3B -0.08372 0.20124 0.36668 $0.0569*$ H5 0.40001 -0.1747 0.47486 $0.0444*$ H6 0.33740 0.19515 0.42224 $0.0444*$ H7A 0.0136 -0.49086 0.47685 $0.0593*$ H7B -0.00207 -0.26864 0.51642 $0.0593*$ H7A 0.0159 -0.56760 0.53213 $0.0593*$ H7B -0.16623 0.99847 0.07909 $0.729*$ H5B 0.41433 0.38265 </td <td>N5</td> <td>0.0884 (4)</td> <td>0.0189 (11)</td> <td>0.2668 (2)</td> <td>0.040 (2)</td>	N5	0.0884 (4)	0.0189 (11)	0.2668 (2)	0.040 (2)
C10 -0.0733 (4) 0.4019 (13) 0.1914 (2) 0.031 (2)C11 -0.0188 (4) 0.5961 (13) 0.1670 (2) 0.029 (2)C12 -0.0626 (5) 0.7582 (13) 0.1326 (2) 0.030 (2)C13 -0.1603 (4) 0.7257 (13) 0.1226 (2) 0.032 (3)C14 -0.2137 (5) 0.5398 (14) 0.1471 (3) 0.038 (3)C15 -0.1697 (4) 0.3796 (13) 0.1809 (2) 0.035 (2)C16 0.0808 (4) 0.9841 (14) 0.1099 (3) 0.045 (3)C17 -0.0297 (4) 0.2151 (12) 0.2254 (2) 0.033 (2)C18 0.1785 (5) 0.0009 (15) 0.2845 (2) 0.033 (2)C18 0.1785 (5) 0.0009 (15) 0.2845 (2) 0.033 (2)H2 0.07352 -0.06591 0.45048 $0.0424*$ H2A 0.26884 -0.54591 0.53860 $0.0649*$ H2B 0.08747 0.62892 0.34795 $0.0490*$ H3A -0.16059 0.32439 0.36566 $0.0569*$ H5 0.40001 -0.11747 0.47486 $0.0464*$ H6 0.33740 0.19515 0.42224 $0.0444*$ H7A 0.01136 -0.49086 0.47685 $0.0593*$ H7B -0.0207 -0.26864 0.51642 $0.593*$ H7B -0.0207 -0.26864 0.51642 $0.593*$ H7A 0.01136 -0.49086 0.47685 $0.03534*$ H5A -0.16623 0.9984	N6	0.2384 (4)	0.1926 (10)	0.2705 (2)	0.044 (2)
C11 -0.0188 (4) 0.5961 (13) 0.1670 (2) 0.029 (2) C12 -0.0626 (5) 0.7582 (13) 0.1326 (2) 0.030 (2) C13 -0.1603 (4) 0.7257 (13) 0.1226 (2) 0.038 (3) C14 -0.2137 (5) 0.5398 (14) 0.1471 (3) 0.038 (3) C15 -0.1697 (4) 0.3796 (13) 0.1809 (2) 0.035 (2) C16 0.8088 (4) 0.9841 (14) 0.1099 (3) 0.045 (3) C17 -0.0297 (4) 0.2151 (12) 0.2254 (2) 0.030 (2) C18 0.1785 (5) 0.0009 (15) 0.2845 (2) 0.033 (2) H2 0.07352 -0.06591 0.45048 0.0424* H2A 0.26884 -0.65891 0.53860 0.0649* H2B 0.08747 0.62892 0.34795 0.0490* H3A -0.16059 0.32439 0.36668 0.0569* H3B -0.08372 0.20124 0.36668 0.0593* H7B 0.00207 -0.26864 0.51642 0	C10	-0.0733 (4)	0.4019 (13)	0.1914 (2)	0.031 (2)
C12 $-0.0626 (5)$ $0.7582 (13)$ $0.1326 (2)$ $0.030 (2)$ C13 $-0.1603 (4)$ $0.7257 (13)$ $0.1226 (2)$ $0.032 (3)$ C14 $-0.2137 (5)$ $0.5398 (14)$ $0.1471 (3)$ $0.038 (3)$ C15 $-0.1697 (4)$ $0.3796 (13)$ $0.1809 (2)$ $0.035 (2)$ C16 $0.0808 (4)$ $0.9841 (14)$ $0.1099 (3)$ $0.045 (3)$ C17 $-0.0297 (4)$ $0.2151 (12)$ $0.2254 (2)$ $0.030 (2)$ C18 $0.1785 (5)$ $0.0009 (15)$ $0.2845 (2)$ $0.033 (2)$ H2 0.07352 -0.06591 0.45048 $0.0424*$ H2A 0.26884 -0.54591 0.53860 $0.0649*$ H2B 0.08747 0.62892 0.34795 $0.0490*$ H3A -0.16059 0.32439 0.33656 $0.0569*$ H3B -0.08372 0.20124 0.36668 $0.0569*$ H5 0.40001 -0.11747 0.47486 $0.0444*$ H6 0.33740 0.19515 0.42224 $0.0444*$ H7A 0.01136 -0.49086 0.47685 $0.0593*$ H7B -0.00207 -0.26864 0.51642 $0.0593*$ H7C -0.00159 -0.56760 0.53213 $0.0593*$ H8 0.20166 0.41433 0.38265 $0.0377*$ H5A -0.16623 0.99847 0.7998 $0.0534*$ H6B 0.21835 0.31947 0.25217 $0.0534*$ H6B 0.22777 0.52269 0.14088 $0.0458*$	C11	-0.0188 (4)	0.5961 (13)	0.1670 (2)	0.029 (2)
C13 -0.1603 (4) 0.7257 (13) 0.1226 (2) 0.032 (3)C14 -0.2137 (5) 0.5398 (14) 0.1471 (3) 0.038 (3)C15 -0.1697 (4) 0.3796 (13) 0.1809 (2) 0.035 (2)C16 0.0808 (4) 0.9841 (14) 0.1099 (3) 0.045 (3)C17 -0.0297 (4) 0.2151 (12) 0.2254 (2) 0.030 (2)C18 0.1785 (5) 0.0009 (15) 0.2845 (2) 0.033 (2)H2 0.07352 -0.06591 0.45048 0.0424^* H2A 0.26884 -0.54591 0.53860 0.0649^* H3A -0.16059 0.32439 0.33656 0.0569^* H3B -0.08372 0.20124 0.36668 0.0569^* H5 0.40001 -0.11747 0.47486 0.0464^* H6 0.33740 0.19515 0.42224 0.0444^* H7A 0.01136 -0.49086 0.47685 0.0593^* H7B -0.00207 -0.26864 0.51642 0.0593^* H7A 0.01159 -0.56760 0.53213 0.0593^* H7B -0.0207 -0.26864 0.51642 0.0377^* H5A -0.16623 0.99847 0.07909 0.729^* H5B 0.04750 -0.10020 0.27510 0.0479^* H6A 0.29709 0.18908 0.27988 0.05534^* H11 0.04595 0.61546 0.17385 0.0351^* H14 -0.27877 0.52269 0.14088 $0.$	C12	-0.0626 (5)	0.7582 (13)	0.1326 (2)	0.030 (2)
C14 -0.2137 (5) 0.5398 (14) 0.1471 (3) 0.038 (3) C15 -0.1697 (4) 0.3796 (13) 0.1809 (2) 0.035 (2) C16 0.0808 (4) 0.9841 (14) 0.1099 (3) 0.045 (3) C17 -0.0297 (4) 0.2151 (12) 0.2254 (2) 0.030 (2) C18 0.1785 (5) 0.0009 (15) 0.2845 (2) 0.033 (2) H2 0.07352 -0.06591 0.45048 0.0424* H2A 0.26884 -0.54591 0.53860 0.0649* H2B 0.08747 0.62892 0.34795 0.0490* H3A -0.16059 0.32439 0.33656 0.0569* H3B -0.08372 0.20124 0.36668 0.0569* H5 0.40001 -0.11747 0.47486 0.0444* H7A 0.01136 -0.49086 0.47685 0.0593* H7B -0.00207 -0.26864 0.51642 0.0593* H7C -0.00159 -0.56760 0.53213 0.0593*	C13	-0.1603 (4)	0.7257 (13)	0.1226 (2)	0.032 (3)
C15 $-0.1697 (4)$ $0.3796 (13)$ $0.1809 (2)$ $0.035 (2)$ C16 $0.0808 (4)$ $0.9841 (14)$ $0.1099 (3)$ $0.045 (3)$ C17 $-0.0297 (4)$ $0.2151 (12)$ $0.2254 (2)$ $0.030 (2)$ C18 $0.1785 (5)$ $0.0009 (15)$ $0.2845 (2)$ $0.033 (2)$ H2 0.07352 -0.06591 0.45048 $0.0424*$ H2A 0.26884 -0.54591 0.53860 $0.0649*$ H3A -0.16059 0.32439 0.33656 $0.0569*$ H3B -0.08372 0.20124 0.36668 $0.0569*$ H5 0.40001 -0.11747 0.47486 $0.0444*$ H6 0.33740 0.19515 0.42224 $0.0444*$ H7A 0.01136 -0.49086 0.47685 $0.0593*$ H7B -0.00207 -0.26864 0.51642 $0.0593*$ H7C -0.00159 -0.56760 0.53213 $0.0593*$ H8 0.20166 0.41433 0.38265 $0.0377*$ H5A $-0.16c23$ 0.99847 0.07909 $0.0729*$ H5B 0.4750 -0.18020 0.27510 $0.0448*$ H6B 0.21835 0.31947 0.25217 $0.6534*$ H11 0.04595 0.61546 0.17385 $0.0351*$ H14 -0.27877 0.52269 0.14088 $0.0458*$ H15 -0.20577 0.25249 0.19730 $0.0421*$ H16A 0.11246 0.81983 0.10266 $0.0675*$ H16B $0.$	C14	-0.2137 (5)	0.5398 (14)	0.1471 (3)	0.038 (3)
C16 0.808 (4) 0.9841 (14) 0.1099 (3) 0.045 (3) C17 -0.0297 (4) 0.2151 (12) 0.2254 (2) 0.030 (2) C18 0.1785 (5) 0.0009 (15) 0.2845 (2) 0.033 (2) H2 0.07352 -0.06591 0.45048 0.0424* H2A 0.26884 -0.54591 0.53860 0.0649* H2B 0.08747 0.62892 0.34795 0.0490* H3A -0.16059 0.32439 0.33656 0.0569* H3B -0.08372 0.20124 0.36668 0.0464* H6 0.33740 0.19515 0.42224 0.0444* H7A 0.01136 -0.49086 0.47685 0.0593* H7B -0.00207 -0.26864 0.51642 0.0593* H7C -0.00159 -0.56760 0.53213 0.0593* H8 0.20166 0.41433 0.38265 0.0377* H5B 0.04750 -0.10020 0.27510 0.0479* H6A <td< td=""><td>C15</td><td>-0.1697 (4)</td><td>0.3796 (13)</td><td>0.1809 (2)</td><td>0.035 (2)</td></td<>	C15	-0.1697 (4)	0.3796 (13)	0.1809 (2)	0.035 (2)
C17 -0.0297 (4) 0.2151 (12) 0.2254 (2) 0.030 (2) C18 0.1785 (5) 0.0009 (15) 0.2845 (2) 0.033 (2) H2 0.07352 -0.06591 0.45048 0.0424* H2A 0.26884 -0.54591 0.53860 0.0649* H2B 0.08747 0.62892 0.34795 0.0490* H3A -0.16059 0.32439 0.33656 0.0569* H3B -0.08372 0.20124 0.36668 0.0644* H6 0.33740 0.19515 0.42224 0.0444* H7A 0.01136 -0.49086 0.47685 0.0593* H7B -0.00207 -0.26864 0.51642 0.0593* H7C -0.00159 -0.56760 0.53213 0.0593* H8 0.20166 0.41433 0.38265 0.0377* H5B 0.04750 -0.10020 0.27510 0.0479* H6A 0.29709 0.18908 0.27988 0.0534* H6B 0.21835 <td>C16</td> <td>0.0808 (4)</td> <td>0.9841 (14)</td> <td>0.1099 (3)</td> <td>0.045 (3)</td>	C16	0.0808 (4)	0.9841 (14)	0.1099 (3)	0.045 (3)
C18 0.1785 (5) 0.0009 (15) 0.2845 (2) 0.033 (2)H2 0.07352 -0.06591 0.45048 $0.0424*$ H2A 0.26884 -0.54591 0.53860 $0.0649*$ H2B 0.08747 0.62892 0.34795 $0.0490*$ H3A -0.16059 0.32439 0.33656 $0.0569*$ H3B -0.08372 0.20124 0.36668 $0.0569*$ H5 0.40001 -0.11747 0.47486 $0.0444*$ H6 0.33740 0.19515 0.42224 $0.0444*$ H7A 0.01136 -0.49086 0.47685 $0.0593*$ H7B -0.00207 -0.26864 0.51642 $0.0593*$ H7C -0.00159 -0.56760 0.53213 $0.0593*$ H8 0.20166 0.41433 0.38265 $0.0377*$ H5A -0.16623 0.99847 0.07909 $0.0729*$ H5B 0.04750 -0.10020 0.27510 $0.0479*$ H6A 0.29709 0.18908 0.27988 $0.0534*$ H11 0.04595 0.61546 0.17385 $0.0351*$ H14 -0.27877 0.52269 0.14088 $0.0458*$ H15 -0.20577 0.25249 0.19730 $0.0421*$ H16A 0.11246 0.81983 0.10266 $0.0675*$ H16B 0.09561 1.03701 0.14284 $0.0675*$ H16C 0.10226 1.11826 0.08749 $0.0675*$ H16C 0.10226 1.11826 0	C17	-0.0297 (4)	0.2151 (12)	0.2254 (2)	0.030 (2)
H2 0.07352 -0.06591 0.45048 $0.0424*$ H2A 0.26884 -0.54591 0.53860 $0.0649*$ H2B 0.08747 0.62892 0.34795 $0.0490*$ H3A -0.16059 0.32439 0.33656 $0.0569*$ H3B -0.08372 0.20124 0.36668 $0.0569*$ H5 0.40001 -0.11747 0.47486 $0.0464*$ H6 0.33740 0.19515 0.42224 $0.0444*$ H7A 0.01136 -0.49086 0.47685 $0.0593*$ H7B -0.00207 -0.26864 0.51642 $0.0593*$ H7C -0.00159 -0.56760 0.53213 $0.0593*$ H8 0.20166 0.41433 0.38265 $0.0377*$ H5A -0.16623 0.99847 0.07909 $0.0729*$ H5B 0.04750 -0.10020 0.27510 $0.0479*$ H6A 0.29709 0.18908 0.27988 $0.0534*$ H6B 0.21835 0.31947 0.25217 $0.0534*$ H11 0.04595 0.61546 0.17385 $0.0351*$ H14 -0.27877 0.52269 0.14088 $0.0458*$ H15 -0.20577 0.25249 0.19730 $0.0421*$ H16A 0.11246 0.81983 0.10266 $0.0675*$ H16B 0.09561 1.03701 0.14284 $0.0675*$ H16C 0.10226 1.11826 0.08749 $0.075*$ H17 -0.06819 0.08711 0.23996 <	C18	0.1785 (5)	0.0009 (15)	0.2845 (2)	0.033 (2)
H2A0.26884-0.545910.538600.0649*H2B0.087470.628920.347950.0490*H3A-0.160590.324390.336560.0569*H3B-0.083720.201240.366680.0669*H50.40001-0.117470.474860.0464*H60.337400.195150.422240.0444*H7A0.01136-0.490860.476850.0593*H7B-0.00207-0.268640.516420.0593*H7C-0.00159-0.567600.532130.0593*H80.201660.414330.382650.0377*H5A-0.166230.998470.079090.0729*H5B0.04750-0.100200.275100.0479*H6A0.297090.189080.279880.0534*H110.045950.615460.173850.0351*H14-0.278770.522690.140880.0458*H15-0.205770.252490.197300.0421*H16A0.112460.819830.102660.0675*H16B0.095611.037010.142840.0675*H16C0.102261.118260.087490.0675*H17-0.068190.087110.239960.0368*	H2	0.07352	-0.06591	0.45048	0.0424*
H2B0.087470.628920.347950.0490*H3A-0.160590.324390.336560.0569*H3B-0.083720.201240.366680.0569*H50.40001-0.117470.474860.0464*H60.337400.195150.422240.0444*H7A0.01136-0.490860.476850.0593*H7B-0.00207-0.268640.516420.0593*H7C-0.00159-0.567600.532130.0593*H80.201660.414330.382650.0377*H5A-0.166230.998470.079090.0729*H5B0.04750-0.100200.275100.0479*H6A0.297090.189080.279880.0534*H110.045950.615460.173850.0351*H14-0.278770.522690.140880.0458*H15-0.205770.252490.197300.0421*H16A0.112460.819830.102660.0675*H16B0.095611.037010.142840.0675*H16C0.102261.118260.087490.0675*H17-0.068190.087110.239960.0368*	H2A	0.26884	-0.54591	0.53860	0.0649*
H3A-0.160590.324390.336560.0569*H3B-0.083720.201240.366680.0569*H50.40001-0.117470.474860.0464*H60.337400.195150.422240.0444*H7A0.01136-0.490860.476850.0593*H7B-0.00207-0.268640.516420.0593*H7C-0.00159-0.567600.532130.0593*H80.201660.414330.382650.0377*H5A-0.166230.998470.079090.0729*H5B0.04750-0.100200.275100.0479*H6A0.297090.189080.279880.0534*H110.045950.615460.173850.0351*H14-0.278770.522690.140880.0458*H15-0.205770.252490.197300.0421*H16A0.112460.819830.102660.0675*H16B0.095611.037010.142840.0675*H16C0.102261.118260.087490.0675*H17-0.068190.087110.239960.0368*	H2B	0.08747	0.62892	0.34795	0.0490*
H3B-0.083720.201240.366680.0569*H50.40001-0.117470.474860.0464*H60.337400.195150.422240.0444*H7A0.01136-0.490860.476850.0593*H7B-0.00207-0.268640.516420.0593*H7C-0.00159-0.567600.532130.0593*H80.201660.414330.382650.0377*H5A-0.166230.998470.079090.0729*H5B0.04750-0.100200.275100.0479*H6A0.297090.189080.279880.0534*H110.045950.615460.173850.0351*H14-0.278770.522690.140880.0458*H15-0.205770.252490.197300.0421*H16A0.112460.819830.102660.0675*H16B0.095611.037010.142840.0675*H16C0.102261.118260.087490.0675*H17-0.068190.087110.239960.0368*	H3A	-0.16059	0.32439	0.33656	0.0569*
H50.40001-0.117470.474860.0464*H60.337400.195150.422240.0444*H7A0.01136-0.490860.476850.0593*H7B-0.00207-0.268640.516420.0593*H7C-0.00159-0.567600.532130.0593*H80.201660.414330.382650.0377*H5A-0.166230.998470.079090.0729*H5B0.04750-0.100200.275100.0479*H6A0.297090.189080.279880.0534*H110.045950.615460.173850.0351*H14-0.278770.522690.140880.0458*H15-0.205770.252490.197300.0421*H16A0.112460.819830.102660.0675*H16B0.095611.037010.142840.0675*H16C0.102261.118260.087490.0675*H17-0.068190.087110.239960.0368*	H3B	-0.08372	0.20124	0.36668	0.0569*
H60.337400.195150.422240.0444*H7A0.01136-0.490860.476850.0593*H7B-0.00207-0.268640.516420.0593*H7C-0.00159-0.567600.532130.0593*H80.201660.414330.382650.0377*H5A-0.166230.998470.079090.0729*H5B0.04750-0.100200.275100.0479*H6A0.297090.189080.279880.0534*H110.045950.615460.173850.0351*H14-0.278770.522690.140880.0458*H15-0.205770.252490.197300.0421*H16A0.112460.819830.102660.0675*H16B0.095611.037010.142840.0675*H16C0.102261.118260.087490.0675*H17-0.068190.087110.239960.0368*	Н5	0.40001	-0.11747	0.47486	0.0464*
H7A0.01136-0.490860.476850.0593*H7B-0.00207-0.268640.516420.0593*H7C-0.00159-0.567600.532130.0593*H80.201660.414330.382650.0377*H5A-0.166230.998470.079090.0729*H5B0.04750-0.100200.275100.0479*H6A0.297090.189080.279880.0534*H110.045950.615460.173850.0351*H14-0.278770.522690.140880.0458*H15-0.205770.252490.197300.0421*H16B0.095611.037010.142840.0675*H16C0.102261.118260.087490.0675*H17-0.068190.087110.239960.0368*	H6	0.33740	0.19515	0.42224	0.0444*
H7B-0.00207-0.268640.516420.0593*H7C-0.00159-0.567600.532130.0593*H80.201660.414330.382650.0377*H5A-0.166230.998470.079090.0729*H5B0.04750-0.100200.275100.0479*H6A0.297090.189080.279880.0534*H110.045950.615460.173850.0351*H14-0.278770.522690.140880.0458*H15-0.205770.252490.197300.0421*H16A0.112460.819830.102660.0675*H16B0.095611.037010.142840.0675*H16C0.102261.118260.087490.0675*H17-0.068190.087110.239960.0368*	H7A	0.01136	-0.49086	0.47685	0.0593*
H7C-0.00159-0.567600.532130.0593*H80.201660.414330.382650.0377*H5A-0.166230.998470.079090.0729*H5B0.04750-0.100200.275100.0479*H6A0.297090.189080.279880.0534*H6B0.218350.319470.252170.0534*H110.045950.615460.173850.0351*H14-0.278770.522690.140880.0458*H15-0.205770.252490.197300.0421*H16A0.112460.819830.102660.0675*H16B0.095611.037010.142840.0675*H16C0.102261.118260.087490.0675*H17-0.068190.087110.239960.0368*	H7B	-0.00207	-0.26864	0.51642	0.0593*
H80.201660.414330.382650.0377*H5A-0.166230.998470.079090.0729*H5B0.04750-0.100200.275100.0479*H6A0.297090.189080.279880.0534*H6B0.218350.319470.252170.0534*H110.045950.615460.173850.0351*H14-0.278770.522690.140880.0458*H15-0.205770.252490.197300.0421*H16A0.112460.819830.102660.0675*H16B0.095611.037010.142840.0675*H16C0.102261.118260.087490.0675*H17-0.068190.087110.239960.0368*	H7C	-0.00159	-0.56760	0.53213	0.0593*
H5A-0.166230.998470.079090.0729*H5B0.04750-0.100200.275100.0479*H6A0.297090.189080.279880.0534*H6B0.218350.319470.252170.0534*H110.045950.615460.173850.0351*H14-0.278770.522690.140880.0458*H15-0.205770.252490.197300.0421*H16A0.112460.819830.102660.0675*H16B0.095611.037010.142840.0675*H16C0.102261.118260.087490.0675*H17-0.068190.087110.239960.0368*	H8	0.20166	0.41433	0.38265	0.0377*
H5B0.04750-0.100200.275100.0479*H6A0.297090.189080.279880.0534*H6B0.218350.319470.252170.0534*H110.045950.615460.173850.0351*H14-0.278770.522690.140880.0458*H15-0.205770.252490.197300.0421*H16A0.112460.819830.102660.0675*H16B0.095611.037010.142840.0675*H16C0.102261.118260.087490.0675*H17-0.068190.087110.239960.0368*	H5A	-0.16623	0.99847	0.07909	0.0729*
H6A0.297090.189080.279880.0534*H6B0.218350.319470.252170.0534*H110.045950.615460.173850.0351*H14-0.278770.522690.140880.0458*H15-0.205770.252490.197300.0421*H16A0.112460.819830.102660.0675*H16B0.095611.037010.142840.0675*H16C0.102261.118260.087490.0675*H17-0.068190.087110.239960.0368*	H5B	0.04750	-0.10020	0.27510	0.0479*
H6B0.218350.319470.252170.0534*H110.045950.615460.173850.0351*H14-0.278770.522690.140880.0458*H15-0.205770.252490.197300.0421*H16A0.112460.819830.102660.0675*H16B0.095611.037010.142840.0675*H16C0.102261.118260.087490.0675*H17-0.068190.087110.239960.0368*	H6A	0.29709	0.18908	0.27988	0.0534*
H110.045950.615460.173850.0351*H14-0.278770.522690.140880.0458*H15-0.205770.252490.197300.0421*H16A0.112460.819830.102660.0675*H16B0.095611.037010.142840.0675*H16C0.102261.118260.087490.0675*H17-0.068190.087110.239960.0368*	H6B	0.21835	0.31947	0.25217	0.0534*
H14-0.278770.522690.140880.0458*H15-0.205770.252490.197300.0421*H16A0.112460.819830.102660.0675*H16B0.095611.037010.142840.0675*H16C0.102261.118260.087490.0675*H17-0.068190.087110.239960.0368*	H11	0.04595	0.61546	0.17385	0.0351*
H15-0.205770.252490.197300.0421*H16A0.112460.819830.102660.0675*H16B0.095611.037010.142840.0675*H16C0.102261.118260.087490.0675*H17-0.068190.087110.239960.0368*	H14	-0.27877	0.52269	0.14088	0.0458*
H16A0.112460.819830.102660.0675*H16B0.095611.037010.142840.0675*H16C0.102261.118260.087490.0675*H17-0.068190.087110.239960.0368*	H15	-0.20577	0.25249	0.19730	0.0421*
H16B0.095611.037010.142840.0675*H16C0.102261.118260.087490.0675*H17-0.068190.087110.239960.0368*	H16A	0.11246	0.81983	0.10266	0.0675*
H16C0.102261.118260.087490.0675*H17-0.068190.087110.239960.0368*	H16B	0.09561	1.03701	0.14284	0.0675*
H17 -0.06819 0.08711 0.23996 0.0368*	H16C	0.10226	1.11826	0.08749	0.0675*
	H17	-0.06819	0.08711	0.23996	0.0368*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.028 (3)	0.070 (4)	0.055 (4)	-0.003 (3)	-0.004 (3)	0.032 (3)
O2	0.030 (3)	0.052 (4)	0.049 (3)	0.005 (2)	-0.003 (2)	0.013 (3)
O3	0.028 (2)	0.039 (3)	0.060 (3)	0.000 (2)	-0.011 (2)	0.016 (3)
N1	0.031 (3)	0.031 (4)	0.042 (4)	0.001 (3)	-0.010 (3)	0.012 (3)
N2	0.024 (3)	0.036 (4)	0.062 (4)	-0.005(3)	-0.013 (3)	0.013 (3)
N3	0.026 (3)	0.055 (5)	0.062 (4)	-0.003(3)	-0.010 (3)	0.020 (4)
C1	0.025 (4)	0.038 (5)	0.030 (4)	0.000 (3)	0.001 (3)	0.005 (3)
C2	0.029 (4)	0.037 (5)	0.040 (4)	0.007 (4)	-0.007(3)	0.001 (4)
C3	0.029 (4)	0.039 (5)	0.026 (4)	0.000 (3)	0.003 (3)	0.003 (3)
C4	0.036 (4)	0.033 (4)	0.023 (4)	0.010 (4)	-0.005 (3)	-0.002 (3)
C5	0.024 (4)	0.039 (5)	0.054 (5)	0.001 (3)	-0.004 (3)	0.007 (4)
C6	0.029 (4)	0.033 (5)	0.049 (5)	-0.002(3)	0.003 (3)	0.007 (4)
C7	0.027 (4)	0.074 (6)	0.047 (5)	-0.009 (4)	-0.003 (4)	0.006 (4)
C8	0.033 (4)	0.032 (4)	0.030 (4)	-0.005 (4)	0.003 (3)	0.000 (3)
C9	0.023 (4)	0.032 (4)	0.038 (4)	0.001 (3)	0.002 (3)	-0.005 (4)
O4	0.026 (2)	0.045 (3)	0.053 (3)	0.002 (2)	0.004 (2)	0.018 (3)
05	0.036 (3)	0.056 (4)	0.054 (4)	0.008 (3)	-0.008(3)	0.023 (3)
O6	0.037 (3)	0.037 (3)	0.055 (3)	0.006 (2)	-0.013 (3)	0.016 (3)
N4	0.033 (3)	0.032 (3)	0.027 (3)	0.001 (3)	-0.003 (2)	0.008 (3)
N5	0.037 (3)	0.035 (4)	0.048 (4)	-0.008(3)	-0.009(3)	0.019 (3)
N6	0.028 (3)	0.041 (4)	0.064 (5)	-0.004(3)	-0.007(3)	0.011 (3)
C10	0.035 (4)	0.033 (4)	0.024 (4)	-0.001 (4)	-0.006 (3)	-0.004 (3)
C11	0.023 (3)	0.038 (4)	0.027 (4)	-0.001 (3)	-0.003 (3)	-0.001 (4)
C12	0.031 (4)	0.025 (4)	0.035 (4)	-0.002(3)	-0.001(3)	-0.002(3)
C13	0.029 (4)	0.040 (5)	0.027 (4)	0.006 (4)	-0.002(3)	0.005 (4)
C14	0.022 (3)	0.050 (5)	0.043 (5)	0.000 (4)	-0.005(3)	-0.001 (4)
C15	0.026 (3)	0.039 (4)	0.041 (4)	-0.006 (4)	0.001 (3)	0.012 (4)
C16	0.027 (4)	0.052 (5)	0.056 (6)	-0.008 (4)	0.000 (4)	0.005 (4)
C17	0.027 (4)	0.031 (4)	0.033 (4)	0.004 (3)	-0.007 (3)	0.004 (3)
C18	0.030 (4)	0.032 (4)	0.038 (4)	-0.004 (4)	-0.002(3)	-0.005 (4)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

01—C3	1.365 (8)	C1—C8	1.444 (9)
O1—C7	1.418 (7)	C2—C3	1.386 (9)
O2—C4	1.373 (8)	C3—C4	1.379 (9)
O3—C9	1.232 (8)	C4—C5	1.371 (9)
O2—H2A	0.8200	C5—C6	1.383 (8)
O4—C12	1.365 (8)	C2—H2	0.9300
O4—C16	1.426 (7)	C5—H5	0.9300
O5—C13	1.374 (8)	С6—Н6	0.9300
O6—C18	1.244 (8)	C7—H7C	0.9600
O5—H5A	0.8200	C7—H7A	0.9600
N1—C8	1.259 (9)	C7—H7B	0.9600
N1—N2	1.377 (8)	C8—H8	0.9300
N2—C9	1.375 (7)	C10—C11	1.409 (9)
N3—C9	1.335 (9)	C10—C15	1.384 (8)

N2—H2B	0.8600	C10—C17	1.456 (8)
N3—H3B	0.8600	C11—C12	1.388 (9)
N3—H3A	0.8600	C12—C13	1.404 (9)
N4—N5	1.375 (7)	C13—C14	1.373 (9)
N4—C17	1.282 (7)	C14—C15	1.372 (10)
N5—C18	1.353 (9)	C11—H11	0.9300
N6—C18	1.336 (9)	C14—H14	0.9300
N5—H5B	0.8600	С15—Н15	0.9300
N6—H6B	0.8600	C16—H16A	0.9600
N6—H6A	0.8600	C16—H16B	0.9600
C1—C2	1.386 (9)	C16—H16C	0.9600
C1—C6	1.390 (8)	С17—Н17	0.9300
C3—O1—C7	117.9 (5)	С5—С6—Н6	119.00
C4—O2—H2A	109.00	H7A—C7—H7C	109.00
C12—O4—C16	117.8 (5)	H7A—C7—H7B	109.00
C13—O5—H5A	109.00	O1—C7—H7B	109.00
N2—N1—C8	116.3 (5)	O1—C7—H7C	109.00
N1—N2—C9	121.6 (5)	O1—C7—H7A	109.00
C9—N2—H2B	119.00	H7B—C7—H7C	110.00
N1—N2—H2B	119.00	C1—C8—H8	119.00
C9—N3—H3A	120.00	N1—C8—H8	118.00
H3A—N3—H3B	120.00	C11—C10—C15	119.1 (5)
C9—N3—H3B	120.00	C15—C10—C17	119.2 (5)
N5—N4—C17	114.3 (5)	C11—C10—C17	121.6 (5)
N4—N5—C18	122.7 (5)	C10—C11—C12	119.4 (5)
C18—N5—H5B	119.00	C11—C12—C13	119.5 (6)
N4—N5—H5B	119.00	O4—C12—C11	126.7 (6)
H6A—N6—H6B	120.00	O4—C12—C13	113.7 (5)
C18—N6—H6A	120.00	O5—C13—C14	119.4 (5)
C18—N6—H6B	120.00	O5—C13—C12	119.6 (5)
C2—C1—C6	118.0 (6)	C12—C13—C14	121.0 (6)
C2—C1—C8	120.9 (6)	C13—C14—C15	119.0 (6)
C6—C1—C8	121.1 (6)	C10-C15-C14	121.9 (6)
C1—C2—C3	120.7 (6)	N4—C17—C10	122.8 (5)
O1—C3—C2	126.4 (5)	N5-C18-N6	115.7 (6)
C2—C3—C4	120.0 (6)	O6—C18—N5	120.4 (6)
O1—C3—C4	113.5 (5)	O6—C18—N6	123.8 (6)
O2—C4—C5	119.0 (6)	C10—C11—H11	120.00
O2—C4—C3	120.7 (6)	C12—C11—H11	120.00
C3—C4—C5	120.4 (6)	C13—C14—H14	120.00
C4—C5—C6	119.3 (5)	C15—C14—H14	120.00
C1—C6—C5	121.6 (6)	C10—C15—H15	119.00
N1—C8—C1	123.1 (6)	C14—C15—H15	119.00
O3—C9—N2	120.3 (6)	O4—C16—H16A	110.00
N2—C9—N3	115.6 (6)	O4—C16—H16B	109.00
O3—C9—N3	124.1 (5)	O4—C16—H16C	110.00
С3—С2—Н2	120.00	H16A—C16—H16B	109.00
C1—C2—H2	120.00	H16A—C16—H16C	109.00

С6—С5—Н5	120.00	H16B—C16—H16C	109.00
С4—С5—Н5	120.00	N4—C17—H17	119.00
С1—С6—Н6	119.00	С10—С17—Н17	119.00
C7—O1—C3—C2	6.5 (9)	O1—C3—C4—O2	3.3 (8)
C7—O1—C3—C4	-176.1 (6)	O1—C3—C4—C5	-177.0 (5)
C16-04-C12-C11	2.9 (9)	C2—C3—C4—C5	0.6 (9)
C16-04-C12-C13	-175.3 (6)	C3—C4—C5—C6	0.4 (9)
C8—N1—N2—C9	172.7 (6)	O2—C4—C5—C6	-180.0 (5)
N2-N1-C8-C1	176.9 (5)	C4—C5—C6—C1	-1.5 (9)
N1—N2—C9—N3	-2.0 (8)	C15-C10-C11-C12	-0.8 (9)
N1—N2—C9—O3	179.3 (6)	C17—C10—C11—C12	175.9 (6)
C17—N4—N5—C18	-175.8 (6)	C11—C10—C15—C14	0.5 (9)
N5—N4—C17—C10	-176.6 (5)	C17—C10—C15—C14	-176.2 (6)
N4—N5—C18—O6	-177.8 (5)	C11—C10—C17—N4	1.8 (9)
N4—N5—C18—N6	0.3 (9)	C15—C10—C17—N4	178.5 (6)
C6-C1-C8-N1	175.4 (6)	C10-C11-C12-O4	-178.3 (6)
C2-C1-C6-C5	1.5 (9)	C10-C11-C12-C13	-0.2 (9)
C6—C1—C2—C3	-0.4 (10)	O4—C12—C13—O5	0.2 (8)
C8—C1—C2—C3	-178.8 (6)	O4—C12—C13—C14	179.8 (6)
C8—C1—C6—C5	179.8 (6)	C11—C12—C13—O5	-178.2 (5)
C2-C1-C8-N1	-6.3 (10)	C11—C12—C13—C14	1.4 (9)
C1—C2—C3—C4	-0.6 (10)	O5—C13—C14—C15	178.0 (6)
C1—C2—C3—O1	176.7 (6)	C12—C13—C14—C15	-1.7 (10)
C2—C3—C4—O2	-179.0 (6)	C13—C14—C15—C10	0.7 (10)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
02—H2A…O1	0.82	2.17	2.627 (6)	115
O2— $H2A$ ···O5 ⁱ	0.82	2.34	3.108 (7)	156
N2—H2 <i>B</i> ···O6 ⁱⁱ	0.86	2.11	2.923 (7)	158
N3—H3A····O6 ⁱⁱⁱ	0.86	2.16	2.987 (7)	162
N3—H3 <i>B</i> ···N1	0.86	2.31	2.674 (8)	106
O5—H5 <i>A</i> …O4	0.82	2.18	2.632 (6)	115
N5—H5 <i>B</i> ···O3 ^{iv}	0.86	2.08	2.909 (7)	161
N6—H6A····O3 ^v	0.86	2.13	2.965 (7)	164
N6—H6 <i>B</i> …N4	0.86	2.32	2.677 (7)	105

Symmetry codes: (i) -*x*, -*y*, *z*+1/2; (ii) *x*, *y*+1, *z*; (iii) *x*-1/2, -*y*, *z*; (iv) *x*, *y*-1, *z*; (v) *x*+1/2, -*y*+1, *z*.